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Abstract

A general micromechanical method is developed for a micropolar composite with ellipsoidal fibers, where the matrix
material is idealized as a micropolar material model. The method is based on a special micro—macro transition method,
and the classical effective moduli for micropolar composites can be determined in an analytical way. The influence of
both fiber’s shape and size can be analyzed by the proposed method. The effective moduli, initial yield surface and effec-
tive nonlinear stress and strain relation for a micropolar composite reinforced by ellipsoidal fibers are examined, it is
found that the prediction on the effective moduli and effective nonlinear stress and strain curves are always higher than
those based on classical Cauchy material model, especially for the case where the size of fiber approaches to the
characteristic length of matrix material. As expected, when the size of fiber is sufficiently large, the classical results
(size-independence) can be recovered.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical micromechanics has been recognized a great success in predicting effective properties of com-
posite material from its microstructural information (Nemat-Nasser and Hori, 1993; Hashin, 1983), it pro-
vides an efficient tool to tailor the composite with desired properties. However the classical micromechanics
based on Cauchy material model fails to predict size effect well-observed for metal matrix composites
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(Kouzeli and Mortensen, 2002) and tiny structures (Fleck et al., 1993; Haque and Saif, 2003). In order to
develop a systematic theory explaining the observed size-dependence of material properties, much efforts
have been conducted to remedy the classical continue mechanics, usually by including high order terms
or introducing new degrees of freedom in formulation, this leads to so called high order continue theory.
Contrary to the classical (Cauchy) material model, the high order continue theory assumes that a material
point can be still regarded as infinitely small, however there is microstructure inside of this point (Eringen,
1999). So there are two sets of variable to describe the motion of the material point in a high order continue
theory, one is for the motion of inertia center of the point, the other is for the motion of the microstructure
inside of this material point. With the specific constraint on the motion of microstructure, different classes
of high order theories have been proposed, namely micromorphic, microstretch, micropolar, couple stress
theories, which have been exposed in the monograph by Eringen (1999). The basic idea of the high order
theory is to take into account the nonlocal effect due to the coarse microstructure presented in the material,
and the Cauchy material model, in which any surface of a material element is assumed to transmit only
force but not moment, is just the first-order approximation for the material with microstructure (Jasiuk
and Ostoja-Starzewski, 1995). The other high order theories have also been proposed by different authors,
for example, Aifantis (1984) proposed to incorporate the second gradient of deformation in constitutive
relation, while the basic field equations keep unchanged. Based on the couple stress theory, Fleck and
Hutchinson (1993) proposed a high order phenomenological theory to describe the size-dependence of plas-
ticity, since then an intense research activity has been conducted on the high order theory (see for example,
Gao et al., 1999; Huang et al., 2000; Forest et al., 2000).

The high order theory and homogenization technique have been used to explain the size-dependence for
metal matrix composites and polycrystals. Wei (2001) employed the high order theory proposed by Fleck
et al. (1993)) and finite element method to analyze the influence of particle size on the elastoplastic behavior
of a composite material; using also finite element method, Chen and Wang (2002) idealized the matrix
material as a micropolar material model and examine the influence of fiber’s size on effective nonlinear
stress and strain relation for a metal matrix composite. Zhu et al. (1997) used the high order theory pro-
posed by Aifantis (1984) to study the effective plastic behavior of a particulate composite, the method is
also based on finite element method. Analytical homogenization methods for a heterogeneous high order
medium have also been proposed by Smyshlyaev and Fleck (1995) with strain gradient model and by
Sharma and Dasgupta (2002) with a linear micropolar material model.

Recently Xun et al. (2004a,b), Liu and Hu (2005), Hu et al. (2005) have proposed an analytical micro-
mechanical method to examine the classical elastic and plastic properties for particulate and long fiber com-
posites. In this method, they idealize the matrix material with coarse microstructure as a micropolar
material model. The proposed method can well describe the size effect observed for metal matrix compos-
ites, and at the same time it remains as an analytical formulation. The proposed method is based on micro-
polar Eshelby tensor proposed by Cheng and He (1995)) and on secant moduli concept, it can be considered
as a natural extension of the classical secant moduli method based on the second-order stress moment in
classical micromechanics (Qiu and Weng, 1992; Hu, 1996). This method can also be interpreted in a var-
iation form of a generalized Ponte Castaneda’s type (Ponte Castaneda, 1991; Hu et al., 2005), and it can
in principle be applied for a more general composite in addition to particulate and long fiber (two-dimen-
sional) composites. However effective properties for a more general micropolar composite with ellipsoidal
fibers has not been addressed in a systematic way, especially by an analytical method. So the objective of
this paper is to propose an analytical method to examine the effective elastic and plastic properties for a
micropolar composite with aligned ellipsoidal fibers. The manuscript will be arranged as follows: a brief
review on the basic element for micropolar theory and the microscopic to macroscopic transition method
will be presented in Section 2, the theoretical analysis for evaluating the classical effective moduli and the
nonlinear stress and strain relation of the composite will be given in Section 3, numerical examples will be
provided in Section 4, followed by the conclusions.
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2. Micropolar theory and micro—macro transition method
2.1. Micropolar theory

We are interested in the composite material where the coarse microstructure of matrix material must be
taken into account due to the small size contrast between reinforced fiber and characteristic length of ma-
trix material. In this case the matrix material is therefore idealized as a micropolar material model (Hu
et al., 2005). Before proceeding, we will recall briefly basic elements for micropolar theory.

For a micropolar body without body force and couple, the governing equations are given by Eringen
(1999) and Nowacki (1986):

& = Ui — euidp, ki = d)jj (1a)
0 =0, my, +euoy =0 (1b)
0ji = Cimen + Bjiwik,  mj = Bjiner + Djiky (1c)

where o; and m; denote the stress and couple stress tensors, ¢; and k;; are the strain and torsion tensors, u;
and ¢; are the displacement and microrotation vectors, respectively. Cyzs, By and Dy are the elasticity
tensors of micropolar material, e; is permutation tensor.

For a centrosymmetric and isotropic micropolar body, the elasticity tensors are specified as (Nowacki,
1986):

Bjik[ = 0 (Za)
Cjikl = )béijékl + (,u + K)(sjkéil + (,u - K)(sikéjl (2b)
Dijiy = 20011 4 (B + 7)06u + (B — )00 (2c)

where u, A are the classical Lame’s constants and «, y, f§, « are the new elastic constants introduced in micro-
polar theory. They constitute two set of moduli: u, 4 and x have dimension of force per unit area, and y, f, o
have the dimension of force. J;; is the Kronecker delta. Due to the dimensional difference between the two
sets of moduli, three intrinsic characteristic lengths can be defined for an isotropic elastic micropolar mate-
rial, they can be defined as

W=/ b= /0" b= ()" 3)

The constitutive equation (1c) can also be written in a simple form if we use a’(i s OG> 0(=03) and s’(ij), Eif)s
&(=¢;;) denoting separately the deviatoric symmetric, anti-symmetric and hydrostatic parts of the stress
and strain tensors, and similar notations for the couple-stress and torsion tensors, the well-established
elastic constitutive relations for a linear isotropic micropolar material can be rewritten as (Nowacki,
1986):

Ol = 2Meq), o = 2key, 0 =3Ke (4a)
My = 2Bk, may = 2pkqy,  m = 3Nk (4b)
and
2 2
K=i+3m N=o+3p (5)

where K is the bulk modulus, N can be regarded as the corresponding stiffness measure for torsion, and
symbols () and () in the subscript denote the symmetric and anti-symmetric parts of a tensor,
respectively.
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2.2. Micro—macro transition method

In order to define the effective properties for a micropolar composite, we have to consider a representa-
tive volume element (RVE). According to Xun et al. (2004a) and Liu and Hu (2005), the following special
boundary conditions are prescribed on the RVE:

uj = Egxi,  ¢;=0 (6)

where E;; is symmetric and constant strain over RVE, u;, ¢; are the components of displacement and rota-
tion angle, respectively. This kind of boundary condition enables one to define the classical effective moduli
of a micropolar composite, which relate the symmetric macroscopic stress and strain of the composite mate-
rial, as will be explained below.

For any statically balanced local stress and couple stress fields (g, m;;) and geometrically compatible
local strain and torsion fields (e, k), the volume average of the internal energy over the RVE is

1 1
(g6 + mykij) = (03 (;; — ewjpr)) + (my@,;) = 7 / ojun;dS +— / my;n;dS

ORVE ORVE
1
=Ew) / 0%t S = Emj) (Omj) (7)
ORVE
It can also be shown that
1
(ew)) = 5 (uij +uji) = Egp (8)

where (-) means the volume average of the said quantity over the RVE.
If only stress boundary condition is applied on the boundary of the RVE, that is

oyn; = Zuyni,  mygn; =0 9)
where n; is the components of the outer normal of the RVE’s boundary, it can also be shown that

(o) = 2, (i + myki) = Zmp) (Em)) (10)
Finally the classical effective moduli (compliance) of a micropolar composite can be defined as

(6: e4+m:k)=EY™: C¥™: ¥ = g™ pgoym . pom (11)

where the superscript ‘sym’ means a symmetric tensor, C>", M>™ relating the symmetric stress and strain
by E¥™ = MY™ - ¥ or XY™ = L¥™ : E¥™, which are called classical moduli and compliance of the micro-
polar composite in the following discussion.

In the following section, we will propose an analytical method for evaluating the classical effective mod-
ulus (or compliance) for a general micropolar composite with aligned ellipsoidal fibers.

3. Theoretical formulation
3.1. Eshelby tensor for an ellipsoidal inclusion

Following Ma and Hu (submitted), consider an inclusion © in an infinite centrosymmetric and isotropic
micropolar material, characterized by moduli C, and Dy, a uniform asymmetric eigenstrain ¢* and an eigen-
torsion k™ are prescribed in the inclusion. Here the inclusion means its material constants are the same as
the surrounding matrix (Mura, 1982). According to Cheng and He (1995) and Ma and Hu (submitted), the
induced strain and torsion by the prescribed eigenstrain and eigentorsion can be written as
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ex)=8x): &+L(x): Kk (12a)

k(x)=8(x): & +L(x): k' (12b)

where the tensors S, S, L and L are called micropolar Eshelby tensors, and their expressions for a general
ellipsoidal inclusion are listed in Appendix A. Unlike the Eshelby tensor for the classical material (Cauchy
material model), the micropolar Eshelby tensors are not uniform even inside of an ellipsoidal inclusion.
However the numerical computation shows that their variation in the ellipsoidal inclusion is not significant
(Ma and Hu, submitted). So in the following, the averages of the micropolar Eshelby tensors over the ellip-
soidal inclusion will be used to determine the classical effective property for a micropolar composite. It can
be demonstrated that for a general ellipsoidal inclusion, the following relations for the average micropolar
Eshelby tensors hold (Ma and Hu, submitted)

(Lyy=0, (8);=0 (13)

where (-); means the volume average of the said quantity over the inclusion domain. Eq. (13) means that a
uniform eigenstrain only induces a nonzero average strain and a uniform eigentorsion produces only a non-
zero average torsion for a general ellipsoidal inclusion. The average micropolar Eshelby relations (Eq. (12))
are uncoupled. That is

(@ =(8):&, (k)= <i>1 k" (14)

These two micropolar Eshelby tensors (S); and (i)l will be computed with the expressions given in
Appendix A, the detailed exposition of the micropolar Eshelby tensors for the ellipsoidal inclusion can
be found in the reference by Ma and Hu (submitted).

For an inhomogeneity problem, which the material property (Cj, D;) of the inclusion is different from
the surrounding matrix (Cy, D), the equivalent inclusion method widely used in the classical micromechan-
ics cannot be applied exactly for a micropolar material (Xun et al., 2004a), since the strain and torsion in
the ellipsoidal inhomogeneity are not uniform. To simplify the problem, the average equivalent method will
be used in this paper to determine the strain and torsion in the inhomogeneity, which can be written as

Ci(Ey+ (g);) = Co(Eo+ (8); — &) (15a)
D\ (Ko + (k);) = Do(Ko + (k); — k') (15b)

where &,k are average eigenstrain and eigentorsion; Ej,K, are the remote applied strain and torsion
respectively.

It is shown by Xun et al. (2004a) that for a cylindrical inhomogeneity the average stress determined by
the average equivalent method agrees well with the exact results. However, since there is no exact solution
for a general ellipsoidal inclusion, so Eq. (15) remains as a hypothesis.

3.2. Classical effective moduli of micropolar composite

For a micropolar composite with many aligned ellipsoidal fibers (the properties of the matrix and fiber
are noted respectively by Cy, Dy and Cj, D), the volume fraction of fiber is noted by f. The concept of
Mori-Tanaka’s method (Mori and Tanaka, 1973) in classical micromechanics will be employed to consider
the interaction between the fibers. Now a single fiber is placed into the infinite micropolar matrix material
under remote loading E,, K, which are the unknown average strain and torsion of the micropolar matrix in
the actual composite. So the average equivalent inclusion method (Eq. (15)) can be applied for each fiber,
together with Eq. (14) (¢*, k* being replaced by &, k), the average stress (strain) and couple stress (torsion)
in each fiber can be related to the remote applied load E,, K.
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Since we are interested in the classical effective moduli of the micropolar composite, according to the
micro—macro transition method explained in Section 2, only the symmetric parts of the strain relations
in Egs. (8) and (9) will be used. So we have

CP™ s (BY™ 4+ (™)) = €™« (B3™ + (&™), — &™) (16)
(@) (S, g (17)

sym
i

where S}, = (Sijmn + Sijum + Sjimn + Sjinm) /4 for a fourth-order tensor and &

order tensor.
With help of the micro-macro transition principle and Mori-Tanaka’s method, it can be shown that

= (&; + ¢;;)/2 for a second-

BV = (1= N)E™ + (B + (™)) (%)
and using
B (1B S (™)) )

the classical effective modulus of the composite can be calculated by following exactly the same method as
the classical Mori-Tanaka’s method (see for example, Hu and Weng, 2000), and the classical effective com-
pliance of the micropolar composite (here we assume the fiber is classical material) can be finally derived in
an analytical from as

M = M [ ) =D (- ) ()] (20)

where MP™, My™ and M, are the inverses of the tensor C™, C¢™ and C, separately. I is the fourth-order
unit tensor.

Eq. (20) has the same form as that predicted by Mori-Tanaka’s method for a classical composite, and
for the classical composite, (S*¥™); is replaced by the classical Eshelby tensor of an ellipsoidal inclusion.
The size effect of microstructure is taken into account through the average micropolar Eshelby tensor
($¥™y in Eq. (20). It can be shown that when the fiber’s size (diameter) is sufficiently large, (S$*™); will
be reduced to the classical Eshelby tensor (Ma and Hu, submitted), so the classical results can be
recovered.

3.3. Yield surface of micropolar composite

In this section, the initial yield surface of a micropolar composite will be examined. It is assumed that
when the average equivalent stress of the micropolar matrix reaches its initial yield stress oy, then the com-
posite starts to yield. That is

<Jeff>0 = Oy (21)

where (-)o means the volume average of the said quantity over the matrix, and o is an effective stress for
the micropolar matrix, which is defined as for a micropolar material by (Hu et al., 2005)
2 3 / 3

2
Ot = 50([/') azij) + El (mzij)ml(ij) + myym)) (22)

For simplification, we assume that the elastic characteristic lengths of the matrix material to be equal:
ll - 12 - 13 - l
Let the generalized yield surface of the micropolar composite be specified by

D((Tetr) s 0y) = (Tetr)g — 0y =0 (23)



H. Ma, G. Hu | International Journal of Solids and Structures 43 (2006) 3025-3043 3031

To compute (oeq)o in an analytical way for a general micropolar composite, it is further assumed that
(Geir)g = \/(02;),, this assumption is widely made for classical micromechanics of plasticity (Hu, 1996;
Ponte Castaneda, 1991).

With help of the perturbation method developed for micropolar composites (Liu and Hu, 2005), the sec-
ond-order moment of stress and couple stress of the matrix material defined by Eq. (22) can then be eval-
uated analytically, finally the generalized yield surface of the micropolar composite can be expressed as

3
sym . ysym 2 —
TopET QT b =0 (24)
where
om>™ 1 < omM>" aMSym)
2 c 2 c 2 c
= + —= +
0= T Py oy 7o (o

The analytical expression for MP™ is given by Eq. (20).
3.4. Nonlinear stress and strain relation of micropolar composite
When the applied load is larger than the initial yield stress of the composite, plastic deformation of the

matrix will take place. In order to model the weakened constraint power of the plastic matrix on the fiber,
the secant moduli method based on second-order stress and couple stress moment will be utilized (Liu and

Hu, 2005).
Supposed the stress potential w of the micropolar matrix to be the following form:
I, o, r o,
= e z 25
W= wolown) F 600 R, T T TaN, " (25)
where
3 a2 n 1 il
Ole) = EO'(U)G(U), wo(Gerr) = 6L,uf(f) nrl W(O’eff —ay)"

and # is the strain hardening exponent, H is the hardening modulus of the matrix material.
The secant moduli of the matrix material can be defined through the constitutive relation, this leads to
the following secant quantities for the matrix material (Hu et al., 2005):
1
Uy = - , Ky=k, Kj=Kj (26a)
(1/t9) + 3[(0er — o) /H]"" [0

By=Pu, v =", Ny=No (26b)

where the superscript s means the secant quantities.

With the secant moduli of the matrix defined in Egs. (26a) and (26b), we can follow exactly the same idea
of the secant moduli method developed for a classical composite (see for example, Qiu and Weng, 1992; Hu,
1996) to compute the nonlinear stress and strain relation of a micropolar composite. This can be explained
by the following procedure: for any given macroscopic stress 2™, at which the matrix has entered into
plastic state, for a tested average effective stress of the matrix (ger)o (>0y), the secant moduli of the matrix
can be evaluated by Eq. (26). We consider a linear comparison composite, it has the same microstructure
and fiber’s property as the actual composite, however its matrix has the secant moduli of the actual matrix
in the nonlinear composite. The compliance tensors M™ of this linear comparison composite can be deter-
mined from Eq. (20). The average effective stress of the micropolar matrix for the linear comparison com-
posite can then be evaluated with the expression of M?™, this provides an equation to determine for a given
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applied load the Z*¥™ corresponding (o.g)o. The moduli of the linear comparison composite are interpreted
as the secant moduli of the actual composite. By repeating 2™, the nonlinear stress and strain curves of the
micropolar composite material can then be established.

In the following, we will examine through some numerical examples the size-dependence of the effective
properties for a micropolar composite with aligned ellipsoidal fibers.

4. Numerical applications
A metal matrix composite SiC/Al is taken to be the sample material, the material constants are

o =26 GPa, 1o =50 GPa, ko= 13 GPa, /=10 um for matrix and p; =209 GPa, 4, = 108 GPa for the
fiber material, the other parameters will be specified when used.

1.36
1 | —classical -
1349 [----- micropolar . Tl

1.32 ’
1.30 /
1.28

1.26

Hero/Mg

1.24 1
122 _
1.20 1

1.18

1.16

1.14 T
0.01 0.1 1 10 100

a aspect ratio

. classical
204 === micropolar

Heg/Mg

0.01 0.1 1 10

b aspect ratio

Fig. 1. Effective shear moduli as function of fiber’s aspect ratio: (a) effective in-plane shear modulus; (b) effective out-of-plane shear
modulus.
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4.1. Elastic moduli

Fibers are assumed to be aligned along x3 direction, the modulus in the plane x;—x, is called in-plane
modulus and the others are called out-of-plane modulus in the following. We use the radius of the ellipsoid
a to characterize its size, and its shape is described by its aspect ratio. The predicted effective in-plane shear
modulus p.;> and out-of-plane shear modulus p3; as function of fiber’s aspect ratio are shown in Fig. la
and b, respectively. The fiber’s size is set to be a = /, and its volume fraction is f = 0.15. For comparison, the
effective shear moduli for the composite with a classical matrix is also included. It is found that the pre-
dicted effective shear moduli (in-plane and out-of-plane) of the micropolar composite are slightly higher
than those for the classical composite, the dependence on the fiber’s aspect ratio is the same for these
two models.

The aspect ratio of the fiber is now kept to be 10, the predicted effective shear modulus as function
of fiber size is illustrated in Fig. 2a and b for two volume fractions of the fiber f=0.15 and f=0.3,

2.00 in-ol
In-plane —— classical
----- micropolar
175,
e f=0.3
=, 1504
=
Ny f=0.15
T
alpha=10
1=10um
1.00 T T T T 1
0 10 20 30 40 50
a all
1.75
out-plane classical
----- micropolar
4\
\\\ f=0.3
I
o
=
o
. f=0.15
1254 "~
alpha=10
I=10um
1.00 T T - T T T T T T 1
0 10 20 30 40 50
b all

Fig. 2. Effective shear moduli as function of fiber’s size with a fixed aspect ratio 10: (a) effective in-plane shear modulus; (b) effective
out-of-plane shear modulus.
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respectively, the classical predictions are also included. As for the particulate and fiber composites (Xun
et al., 2004b; Liu and Hu, 2005), when the size of the fiber is comparable or less than the intrinsic length

z, /o,
270 33 Oy
ffffff alpha=0.2
1 alpha=1
1B —— alpha=10
a
z, /o,
2.04
a=l
f=0.15
1=10pum
z.lo,
I3 '3 33’y
------ alpha=0.2
fffff alpha=1
T alpha=10
b -2.0-
2, /o,
2. lo,

ffffff alpha=0.2
fffff alpha=1
alpha=10

Fig. 3. Yield surfaces in X33-X,, stress-space for three different fiber properties and for three different fiber’s aspect ratios 0.2, 1, 10:
(a) common fiber; (b) rigid fiber; (c) voids.
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alpha=0.2
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2.0~
b
222/6y
alpha=0.2
1=10pum
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Fig. 4. Yield surfaces in X33-2,, stress-space of different fiber’s properties for three different fiber sizes: a =1, a=5I, a =100/
(a) common fiber; (b) rigid fiber; (c) voids.
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of the matrix material, the size effect of the fiber on the effective shear moduli of the composite is more pro-
nounced. When the size of the fiber is much larger than the intrinsic length of the matrix material, classical
results can be recovered, as expected.

4.2. Initial yield surface

The material constants are the same as in Section 4.1, the initial yield stress of the micropolar matrix is
oy = 250 MPa. Three kinds of fiber’s properties are examined: one is a common metal matrix composite,
the fiber’s material constants have been given in Section 4.1, another is a rigid fiber composite, the third
one is a voided material. Fig. 3a—c shows the yield surfaces in X332, stress-space for the three types of
the fiber and for three different fiber’s aspect ratios 0.2, 1, 10. The fiber’s size and volume fraction is and

a=|
1 f=0.15

4 1¥10um alpha=100 alpha=0.01

34 alpha=10
o
A alpha=0.1

2]

alpha=1

14

0 T T T T T 1

0.000 0.005 0.010 0.015 0.020 0.025 0.030

E33

Fig. 5. Stress and strain relations of a metal matrix composite for different fiber’s aspect ratios 0.01, 0.1, 1, 10, 100.
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S A —
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0.8 -
matrix a=100I and a=5| a=|
044 classical result
0.0 . T . T . T . T . T . !
0.000 0.005 0.010 0.015 0.020 0.025 0.030

E33

Fig. 6. Stress and strain relations of a metal matrix composite for three different fiber’s sizes: « =1/, a = 51, a = 1001.
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f=0.15 respectively. As predicted by the classical method, the fiber’s shape has significant influence on the
initial yield surface of the composite, anisotropic yielding will be generated if the aspect ratio of the fiber is
not equal to unity.

Fig. 4a—c shows the yield surfaces in X33-X5, stress-space for three different fiber sizes:, « = 5/, a = 100/
respectively, while the fiber’s aspect ratio is taken to be 0.2 and f= 0.15. It is found that when the fiber’s size
decreases, the yield surface of the composite is slightly enlarged. For rigid fiber, the size effect is more
pronounced.

4.3. Nonlinear stress and strain relation
For the composite with aligned fibers, a tensile loading is applied along fiber’s direction. The material

constants are same as in Section 4 for a common metal matrix composite. The plastic parameters of the
matrix are: oy = 250 MPa, i1 =173 MPa and n = 0.455.

3.2+
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284 |- micropolar -
2.4 e \f=0,3
204 e
o e =0.15
3 1.6+ -7 T
1.2 e
0.8
] a=l
0.4 alpha=0.2
1=10um
0.0 T T T T r T - T - T - )
0.000 0.005 0.010 0.015 0.020 0.025 0.030
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Fig. 7. Comparison with classical Cauchy model for a metal matrix composite for two fiber’s volume fractions f'=0.15, 0.3.
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Fig. 8. Stress and strain relations for a voided material at different fiber aspect ratios: 0.01, 0.1, 1, 10, 100.
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The influence of fiber’s aspect ratio on the stress and strain curves for a common composite (metal ma-

trix composite) is illustrated in Fig. 5, fibers with aspect ratio 0.01, 0.1, 1, 10,100 are examined. The fiber
size is set to be a = [ and its volume fraction is £ = 0.15. It is found that fiber’s shape has a significant influ-

ence on the stress and strain relation for the composite, the same as for a Cauchy composite. Now fixed the
fiber’s aspect ratio to be 0.2, the other material parameters remain unchanged, the stress and strain curves
of the composite for three different fiber sizes: @ = I, a = 5/ and a = 100/ are examined, which are shown in
Fig. 6. The predictions for the composite with the classical matrix and un-reinforced matrix are also in-
cluded for comparison. The computed results show that the influence of fiber’s size is also important for
a common metal matrix composite, especially when the fiber’s size approaches to the characteristic length
of the matrix material. However when the fiber’s size is large, the predicted results by the current method is
reduced to the classical one as it should be. The comparison with the classical micromechanics is also

1.0+
0.8 /
—
— &
o
2 0.6
N
0.4 - . A = a=100I and
a=l a=5I| .
matrix classical result
0.2 alpha=0.2
f=0.15
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0.0 T T T T T T T T 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030

E33

Fig. 9. Stress and strain relations for a voided material at three different fiber sizes: « =/, a = 5/, a = 1001.
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Fig. 10. Comparison with classical Cauchy method for a voided material at different volume fractions /= 0.15, 0.3.



H. Ma, G. Hu | International Journal of Solids and Structures 43 (2006) 3025-3043 3039

conducted for two fiber’s volume fractions /= 0.15, 0.3, and the aspect ratio of the fiber is 0.2 and a = /, the
results are shown in Fig. 7. It is found that the prediction by the micropolar model is always higher than
that by the Cauchy model, significant hardening behavior can be produced by the proposed micropolar
model.

The effective stress and strain relations for a voided material are also examined, the influence of void’s
aspect ratio on the stress and strain relations is shown in Fig. 8, as for common metal matrix composite the
shape of the voids has great influence for oblate voids, much less for prolate voids. The influence of the
void’s size on the stress and strain relation is also illustrated in Fig. 9. Compared to the common metal ma-
trix composite, the effect of void’s size on the stress and strain relation is much less significant. The com-
parison with the classical results (based on Cauchy material model) is also given in Fig. 10, as for the
common metal matrix composite, the prediction by the current method is always higher than that by the
classical method.

5. Conclusions

A micromechanical method is proposed for a micropolar composite with ellipsoidal fibers to examine the
influence of the both fiber’s shape and size on the effective elastic and plastic properties of composite mate-
rials. The method is based on a special micro-macro transition method and the micropolar Eshelby tensors
for a general ellipsoidal inclusion, the classical effective moduli for a micropolar composite are determined
analytically by this method. The nonlinear stress and strain relation of micropolar composites are estab-
lished by the secant moduli method based on second-order stress and couple stress moment. With this
method, the influence of the both fiber’s shape and size can be analyzed in a simple analytical way. The
effective moduli, initial yield surface and the effective plastic stress and strain relation for a micropolar com-
posite reinforced by ellipsoidal fibers are analyzed in details. The results show that the prediction based on
the micropolar material model for the effective moduli and effective nonlinear stress and strain curves are
always higher than those based on classical Cauchy material model, especially for small size of fiber. When
the size of fiber is sufficiently large, the classical results (Cauchy material model) can be found.
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Appendix A. Eshelby tensor for an ellipsoidal inclusion (Ma and Hu, submitted)

The expressions of micropolar Eshelby tensors are given by (Cheng and He, 1995; Ma and Hu,
submitted):

St (X) = 151, (X) + Lyjin(X) = €pund 1i(X) (A.la)
Lypnji(%) = Jnjin (X) = €] 1(X) (A.1b)
S (X) = Tojim(X) (A.lc)
Kot (X) = Tjim(X) (A.1d)
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where

A+u A
S ). —0: . — 0 .
[nji - /14*2/1 lﬁ,ijn(x) /14’2/1 5,1(;')1"()() 51n¢.j(x) 51"¢J<X)

2K )
[Vlji = ZPthth,/n (X) =+ 7 [51,14)1()() — 5,‘,,(15‘/-()()] — Ph2[léijM7kk,1(X, h) =+ 2;LM‘,-j,,(x, h)] + P/LéijM.,n (X, h)

K K
+ [P(M +x) + ;} SinM j(X, h) + [P(/J —K) — ;} O ;(X, h)
Juji(x) = — 21—# [(B+ )enicd i (X) + (B — v)ennd 4 (X)] + i [(B+ 7)ensM (X, h) + (B — p)enuM (X, h)]

L(x) = i [1eeijeh g (X) = (14 K)eninh (%) — (1 = K)enjuh (X)) — i (1 + K)eipM (X, 1)

1 + K
= ()M (X, h) — (p = K)eniM i (X, h)] + 5 €M (X, 8) + l;uhZ‘ez:/nM(x, h)
T B U+ K 1
Sji(X) = = ﬂda,-,-n(x) e (003, s (%, 1) + 2BM 130 (X, )] = 3 [00,:M 14 (X, €) + 2BM 3 (. 8)]
u+K
o 4,u;ch2 [uéi.iMﬁ(X?h) + (ﬂ + 'V)(SinM-,j(Xv h) + (ﬁ - V)éjnM,i(Xa h)]

The constants introduced in the previous equations are defined by

P/t ), = UEIUED (23

It is seen that evaluation of the micropolar Eshelby tensors depends on the following three potential func-
tions and their derivatives, which are defined by

L[ ax L [ 1y L[ e A2
b =5 [xaxe b0 =g [ axs Mixb =g [ S ax (A2)
where x = [x|.

The first and second integrals appeared in Eq. (A.2) are the same as in classical Eshelby tensor (Mura,
1982), and they have been evaluated analytically for a general ellipsoidal inclusion. For a micropolar mate-
rial, the last integral in Eq. (A.2) cannot be evaluated in a complete analytical form for a general ellipsoidal
inclusion, however the potential M(x, k) can be reduced to the following one-dimensional integral (Ma and
Hu, submitted):

M(x k):i/ ex/kdx'zkz—k@/oc(DxA)du (A.3)
’ dn Jo x 2 Jo

where the constants in Eq. (A.3) are defined as

1 a [u+adi a |u+di
D—=—— 1 — > - —
<u+a§>”2< +"V”+“2> exp( e
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1 u a
A=1yB h (C: B=-/——, (C=——w8+—
(Bp)eosh (C2), B= [t 0=

u=ajtan’0, p=/x}+x3

I, is the Mth order modified Bessel function of the first kind, « is the radius of the short axis of the ellip-
soidal and aj; is its radius of the major axis. The major axis of the ellipsoidal lines with the axis z. The deriv-
atives of Eq. (A.3) are given by

M (x, k) = —%kz / (D x A,;)du (A.4a)
0
M ;(x,k) = —%kz / (D x A;)du (A.4b)
0
as 2 o
M;,m(X, k) = —Ek / (D X A,,m)du (A4C)
0
M,ijmn(x7k) = _%kz/ (D X A,ijmn)du (A4d)
0
where

A, = Beosh (C2)I, (Bp)%

1
A, = Bcosh(Cz) gy
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3 4
_Epz (501/1)(3/;)(1/. + 5/)%)61)0/. + 5},2){/)»)(3&) + % (50(/;5},;. + 5175,3,1 + 5&,15?/;)] 12 (Bp)

Bl 3 0 0
F — X + VRS (5a/;xy + Ouyxp + 57,/;)61) + T (5a;_x/;x7 + 0pix,x, + 5;,,1x,;xa) I;(Bp)

b
+F PRl 14(Bp)

The symbols «, f, y, A range from 1 to 2, and
A, = Csinh(Cz)I((Bp)
Az = C*cosh(Cz)Io(Bp), A= (d,),

’

Az = CPsinh (C2)Io(Bp), Apee = (As) ., Aupe = (Aap) .
A,zzzz = C4 cosh (CZ)]0<BP)7 A,azzz = (A,a),zzza Aa/i’zz = (A,oc/?) ) Apc/}yz = (A,aﬂy)‘z

With the previous expression, the micropolar Eshelby tensors and their average over the ellipsoidal domain
can be calculated.
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